Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Select Page

Signal Processing for Communications

Signal Processing for Communications

The present text evolved from course notes developed over a period of a dozen years teaching undergraduates the basics of signal processing for communications. The students had mostly a background in electrical engineering, computer science or mathematics, and were typically in their third year of studies, with an interest in communication systems. Thus, they had been exposed to signals and systems, linear algebra, elements of analysis (e.g. Fourier series) and some complex analysis, all of this being fairly standard in an undergraduate program in engineering sciences.

The notes having reached a certain maturity, including examples, solved problems and exercises, we decided to turn them into an easy-to-use text on signal processing, with a look at communications as an application. But rather than writing one more book on signal processing, of which many good ones already exist, we deployed the following variations, which we think will make the book appealing as an undergraduate text.

  • Less formal: Both authors came to signal processing by way of an interest in music and think that signal processing is fun, and should be taught to be fun! Thus, choosing between the intricacies of z-transform inversion through contour integration (how many of us have ever done this after having taken a class in signal processing?) or showing the Karplus-Strong algorithm for synthesizing guitar sounds (which also intuitively illustrates issues of stability along the way), you can guess where our choice fell.
  • More conceptual: We could have said ‘more abstract’, but this sounds scary (and may seem in contradiction with point 1 above, which of course it is not). Thus, the level of mathematical abstraction is probably higher than in several other texts on signal processing, but it allows to think at a higher conceptual level, and also to build foundations for more advanced topics.
  • More application driven: This is an engineering text, which should help the student solve real problems.

Signal Processing for Communications

by Paolo Prandoni and Martin Vetterli (PDF, Online reading) – 12 chapters

Signal Processing for Communications by Paolo Prandoni and Martin Vetterli