Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Select Page

Compiler Design in C

Compiler Design in C

This book presents the subject of Compiler Design in a way that’s understandable to a programmer, rather than a mathematician. My basic premise is that the best way to learn how to write a compiler is to look at one in depth; the best way to understand the theory is to build tools that use that theory for practical ends. So, this book is built around working code that provides immediate practical examples of how given theories are applied.

I have deliberately avoided mathematical notation, foreign to many programmers, in favor of English descriptions of the theory and using the code itself to explain a process. If a theoretical discussion isn’t clear, you can look at the code that implements the theory. I make no claims that the code presented here is the only (or the best) implementation of the concepts presented. I’ve found, however, that looking at an implementation-at any implementation–can be a very useful adjunct to understanding the theory, and the reader is well able to adapt the concepts presented here to alternate implementations.

The disadvantage of my approach is that there is, by necessity, a tremendous amount of low-level detail in this book. It is my belief, however, that this detail is both critically important to understanding how to actually build a real compiler, and is missing from virtually every other book on the subject. Similarly, a lot of the low-level details are more related to program implementation in general than to compilers in particular.

One of the secondary reasons for learning how to build a compiler, however, is to learn how to put together a large and complex program, and presenting complete programs, rather than just the directly compiler-related portions of those programs, furthers this end. I’ve resolved the too-many-details problem, to some extent, by isolating the theoretical materials into their own sections.

Compiler Design in C

by Allen I. Holub (PDF) – 986 pages

Compiler Design in C by Allen I. Holub